
Lattice trees with a restricted number of branch points

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1983 J. Phys. A: Math. Gen. 16 3119

(http://iopscience.iop.org/0305-4470/16/13/036)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 06:29

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/16/13
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 16 (1983) 3119-3125. Printed in Great Britain 
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Abstract. We investigate the asymptotic behaviour of the number of trees having n 
vertices, weakly embeddable in the d-dimensional hypercubic lattice, with restrictions on  
the number (n')  of vertices with degree greater than two. We show rigorously that if 
n+ = o(n/log n )  the growth constant is equal to the corresponding quantity for self-avoiding 
walks. For n' increasing linearly with n we show that the growth constant still exists and 
present arguments indicating that it is strictly greater than that for self-avoiding walks. 

1. Introduction 

The configurational behaviour of linear polymers, in dilute solution in a good solvent, 
has been modelled using the statistics of self-avoiding walks on regular lattices (Barber 
and Ninham 1970). In spite of the apparent simplicity of this model there are few 
rigorous results. If the number, per lattice site, of self-avoiding walks with n edges 
is c, then Hammersley and Morton (1954) have shown that 

(1.1) 

where the value of p, the 'effective coordination number', depends on the detailed 
structure of the lattice. In the polymer problem log@ plays the role of the limiting 
entropy per monomer. 

In a similar way branched polymers have been modelled as lattice animals 
(Lubensky and Isaacson 1979). Several groups have investigated the importance of 
cycles in determining the lattice statistics of these graphs (Lubensky and Isaacson 
1979, Redner 1979, Family 1980, Whittington et a1 1983) and it has been shown that 
the growth constant (analogous to p in (1.1)) exists for animals (Klarner 1967) and 
for animals with a restricted number of cycles (Whittington et al 1983). A case of 
particular interest is when no cycles are allowed (a tree), and there is evidence that 
critical exponents are the same for trees and for unrestricted animals (Seitz and Klein 
1981, Duarte and Ruskin 1981, Gaunt et a1 1982, Lubensky and Isaacson 1979). 

Simple chains (undirected self-avoiding walks) are trees with no branch points. In 
this paper we investigate the behaviour of the growth constant as we allow increasing 
numbers of branch points but no cycles. Defining t ( n ;  113, n4,. . . , n Z d )  to be the 
number, per lattice site, of trees with n vertices, n3 of degree 3, n4 of degree 4, etc, 
weakly embeddable in the d-dimensional hypercubic lattice, we show that 

(1.2) 

when n 3 ,  n4,. . . are fixed, and with p given by (1.1). This implies that the limiting 

O<lim n -02 n-'logc,=inf n >O n - ' l ogc ,= logp<m 

n-cc lim n- ' log t (n ;n3 ,n4 ,  . . . ,  nZd)=logCc 
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entropy per monomer is independent of the number of branch points, provided that 
this number remains finite as n goes to infinity. It is interesting to consider the 
behaviour of the corresponding limit when n 3 ,  n4,  . . . are allowed to increase with n. 
We show that the value of the limit remains unchanged provided that nk = o(n/log n )  
for all k greater than two. 

We also consider the situation in which n3,  n 4 , .  . . , n Z d  are not fixed but subject 
to the restriction &>Z nk S an for a > 0. We show that the corresponding limit exists 
and is strictly greater than logp, and less than or equal to log Ao,  where A. is the 
growth constant for weakly embeddable trees (Klein 1981). 

Previous work on valence restrictions has been of two types. Daoud and Cotton 
(1 982) have considered star-shaped polymers with excluded volume, which are trees 
having a single vertex of degree s, s vertices of unit degree, and all other vertices of 
degree 2. Using scaling arguments they investigated the dimensions of these polymers. 
Although there is an extensive literature on star-shaped polymers (see e.g. Mansfield 
and Stockmayer 1980) excluded volume effects have been largely ignored. 

Gaunt et a1 (1980) have studied lattice animals with the restriction that no vertex 
has valence greater than U. They found that the growth constant depended on t' but 
that the critical exponent was independent of t' for U greater than two; the case v = 2 
corresponds to no branch points. 

2. Eistence of the growth constant for trees with valence restrictions 

In this section we shall show rigorously that the growth constant for the set of trees, 
weakly embeddable in a simple hypercubic lattice and having a fixed number of 
vertices with degree between three and 2d, is equal to that for self-avoiding walks. 
This proof can be extended to other types of lattices. 

The vertices of a d-dimensional hypercubic lattice are the integer points in a 
d-dimensional Euclidean space with coordinates ( X I ,  X Z ,  . . . , x d ) .  The edges of the 
lattice join vertices which differ by unity in a single coordinate. 

Suppose the tree under consideration consists of a set So of vertices. The top 
(bottom) vertex is defined as follows. First, construct the subset SI c So such that the 
coordinate x1 of every vertex in SI has the maximum (minimum) value over all 
coordinates in So. Then recursively construct Sk c Sk-1 such that the coordinate x k  of 
every vertex in s k  has the maximum (minimum) value over all vertices in Sk-1. 
Continue this process until the jth subset (Si) has been constructed where j is the 
smallest integer such that Si has only one member. We shall call the vertex in Si the 
top (bottom) vertex ut (ob )  of So. ut is joined to one or more other vertices, the 
coordinates of each differing from those of ut by unity in exactly one coordinate. The 
top edge, et, is that which joins u t  to the vertex differing from it in the coordinate of 
highest number; this vertex is labelled v e .  

We are interested in the set of trees T ( n ;  n 3 ,  n4,.  . . , n2d) each member having 
m = n - 1 edges where n is the total number of vertices, n3 being of degree 3, n4 of 
degree 4 and so on, up to the coordination number of the lattice and let the cardinality 
(per lattice site) of this set be t ( n ;  n3, n 4 , .  . . , nZd).  (A vertex of degree i has i incident 
edges.) The number nl of vertices of degree 1 is determined by the numbers of 
vertices with degree 3 ,4 ,  . . . , as 

n l = 2 + n 3 + 2 n 4 + .  . .+(2d-2)nzd (2.1) 
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a result which follows from Euler's theorem applied to trees. Knowing n, n 3 ,  n4, and 
so on, therefore, determines both n l  and n 2 .  

Consider a tree g E T ( n  ; n3 ,  n4, . . . , n k ,  . . . , n2d) .  We now construct from each 
such graph, g, a tree with an additional vertex of degree k .  Let the top vertex of g 
be ut ,  with coordinates (x:, . . . , x:). Define the unit vectors C1 = (1 ,0 ,0 ,  . . . , O), 
G 2  = (0 ,1 ,0 ,  . . . , 0) ,  . . . , G d  = (0, 0, 0, . . . , 1). If u t  is of unit degree and k 6 d + 1, add 
the vertices u :  = u t +  G I ,  ut  = U : +  it ,  u2  = U :  + G 2 ,  , . . , u k - l  = U :  + ik-l, and the edges 
( u t - - u ; ) ,  ( U :  -uI), ( U ;  - u 2 ) ,  . . . , (U: - 0 k - l ) .  If k > d  + 1, add the vertices U;, 
ul, u 2 , .  . . , ud together with the additional vertices u d - l  = U ;  - i 2 ,  . . . , U k - l =  u t  -uk -d ,  

andtheedges(u,-u:) ,  (U: - u l ) ,  . . . , ( U :  - u d ) ,  . . . , ( U :  - v k - l ) .  Theresultinggraphisa 
tree with (m + k )  edges, nk + 1 vertices of degree k ,  n2  + 1 of degree 2 and n + k - 2 
of degree 1, the numbers of vertices of all other degrees being unchanged. 

If ut is of degree greater than one, we construct a new graph as follows: delete 
thetopedgee,,  addingtheverticesu: = u t + G 1  andu; =ue+G1,andtheedges (ut-v:) ,  
( u e - u L )  and (U: -U:). The resulting graph is connected and is still a tree. Now add 
k - 2 additional vertices (and appropriate edges) in a manner similar to  that described 
above (i.e. for the case when ut is of unit degree) so that U :  in the resulting graph is 
of degree k (see figure 1 for an example in two dimensions). This construction yields, 
as before, a tree with m + k edges, nk + 1 vertices of degree k ,  n 2  + 1 of degree 2 and 
n l  + k -2 of degree 1, the numbers of vertices of all other degrees being unchanged. 

I , .  

b 

i 

Figure 1. Construction of a tree with an additional vertex of degree k = 4,  for the square 
lattice. 

Therefore, for all such trees with m edges and nk vertices of degree k we can 
uniquely construct a new tree with m + k edges and n k  + 1 vertices of degree k .  Since 
this defines an injection from T ( n  ; n3,  n4, . . . , nk, . . . , n 2 d )  to T ( n  + k ;  n3, . . . , nk + 
1 , .  . . , n 2 d ) ,  we have the inequality 

t ( n  + k ;  n3 ,  . . . , nk 1, . . . , n ~ d )  s t ( n  ; n3, .  . . , nk, . . , n 2 d ) .  (2.2) 
Setting n3 = n4 = . . . = n 2 d  = 0 the resulting graphs are simple chains, so that 
(Hammersley and Morton 1954) 

O<lim n-aD n - ' l o g t ( n ; 0 , 0  , . . . ,  O ) = I O ~ C L < C O .  (2.3) 

Then by induction on n 3 ,  n4,. . . etc we have, using (2.2) and (2.3), 

n-m lim in fn - ' l og t (n ;n3 ,n4 , .  . . ,n2d)alogCL. (2.4) 
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To obtain an upper bound on the number of such trees we consider a tree with n3 
vertices of degree 3,  n4 of degree 4, etc. This tree will contain N simple chains, where 

N = ( 2 d - l ) n 2 d + ( 2 d - 2 ) n 2 d - ~ + .  . . + 2 n 3 + 1 .  (2.5) 

To construct the number of embeddings of these trees, we first require the number 
of (homeomorphically irreducible) trees on n l  vertices of degree 1, n3 of degree 3, 
n4  of degree 4 , .  , , , n2d of degree 2d. The total number of vertices in this tree is 

n * = n - n 2  (2.6) 

and an upper bound on the number of ways of connecting these n" vertices to form 
such a tree is given by a result of Cayley's (1889) that the number of trees on n* 
labelled vertices is n *'n*-2'. 

The edges in this tree are now replaced by N simple chains having a total of m 
edges. We need to count the number of ways of distributing the edges among these 
chains, such that each chain has between one and m - (N - 1) edges, and then consider 
the number of ways in which these chains can be embedded in the d-dimensional 
lattice. From equation (1.1) the number of embeddings of a simple chain of m edges 
is exp[mk +o(m)] ,  where k = log g. Using the above it  is now possible to bound the 
number of trees which can be constructed from the given set of vertices and edges as 

E . .  . 
ml m2 mN 

exp[mlk +o(ml )+m2k  +o(m2)+ .  . .] (2.7) t (n  ; n3, n4, . . . , n2d) s n 

where ml is the number of edges in the Ith simple chain and the sums are taken over 
{ml}  subject to the conditions 

*(n*-2i 

The sum on the right-hand side of (2.7) includes configurations with self-avoiding but 
not mutually-avoiding chains. 

From (2.7), performing the summations, and noticing that ml s m  for all I, gives 

t ( n  ; n3, n4, . . . , n 2 d )  6 n *'"*"'m" exp[mk + o(m 11 

t ( n ;  n3 ,  n 4 , .  . . , n2d)sexp[nk +o(n) ]  

(2.9) 

and from (2.5), (2.6) and (2.9) 

(2.10) 

when n3,  n 4 , .  . . , n2d are fixed. 
Then from (2.4) and (2.10) 

lim n - ' l o g t ( n ; n 3 , n 4 , .  . . , n 2 d ) = k = l o g g .  (2.11) 
n + m  

We now investigate how rapidly n 3 ,  n4, . . . , n2d can increase as n + CD, such that 
the value of the limit in (2.1 I )  is unchanged. From (2.5) and (2.9) we obtain 

t (n  ; n3,  n 4 , .  . . , n2d)  s [2d(1 +n+)Izdn+n exp[nk + o(n ) ]  2 d l l + n * )  

(2dn)4d(t+n+1 exp[nk + o(n 11 (2.12) 

where 

n + = n 3 + . .  .+n2d=n*-nl .  (2.13) 
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We note that 

lim sup n-’ log t(n ; n3, n4, . . . , n2d) s l o g  p 
n-m 

3123 

(2.14) 

(2.15) 

or, equivalently, if 

n’ = o(n/log n ) .  (2.16) 

In addition the arguments leading to (2.4) are valid under this restriction on n +  so 
that (2.16) is a sufficient condition for the value of the limit in (2.11) to remain 
unchanged. In particular, the case of 

n + < n p  (2.17) 

We now examine the situation in which n +  can increase linearly with n, and we 

n + s a n  (2.18) 

with a > O .  Let the number of such weakly embeddable trees be t (n;  a), per site 
of the d-dimensional hypercubic lattice. We shall show that the limit 

n log t(n ; a) exists for positive a. Assuming that the asymptotic form for 
t(n ; a) is 

(2.19) 

for p < 1 satisfies (2.16). 

consider trees with the restriction 

-1 

t(n ; a) - n - e ( n ) ~  (a )”, 

we also show that 

A ( a ) > p  (2.20) 

for all positive a. 
Let T(n ; a) be the set of trees with n vertices having at most a n  vertices of 

degree greater than two. For any pair of graphs g E T (n ;  a) and g’E T ( m ;  a), m # n, 
we construct a graph g”E T(n + m +q(a);  a), as follows. Let ut be the top vertex of 
g and let ub be the bottom vertex of g’. Let ut have coordinates (x:, x:, . . . , x i )  and 
translate g’ so that the coordinates of are (xi + q  +1,x:,xi, .  . . ,xb) .  We 
now add the vertices u ~ = ( x : + l , x :  , . . . ,  x i ) ,  u2=(x:+2,x; ,..., x i )  , . . . ,  u q =  
(xi +q ,  x i ,  . . . , xb) and the edges (ut- u l ) ,  ( U I  - u2), . . . , (U, -ut,). The resulting graph 
g” is a tree with n + m  + q  vertices and at most na  +ma + 2  vertices with degree 
greater than two. Therefore, choosing q to be the smallest integer greater than or 
equal to 2/a ensures that g ” E  T(n + m  + q ;  a). This construction produces a unique 

’ g” for each pair g and g’ but not all members of T(n +m + q ;  a) can be obtained in 
this fashion. Therefore, 

(2.21) t(n;  a ) t ( m ;  a ) ~  t(n +m + q ;  a). 

Since T(n ;  a) is a subset of the set of animals and the nth root of the number of 
animals with n vertices is bounded above (Klarner 1967), t(n ; a)”” is bounded above. 
Hence (Wilker and Whittington 1979) there exists a positive constant A (a) such that 

n+m lim n - ’ log t (n ; a )= logA(a )<co  (2.22) 
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and 

log t (n  ; a )  s (n  + q ( a ) )  log A ( a ) .  

Assuming the expected asymptotic behaviour 

t ( n ;  a ) -n -eca 'A(a )n  

(2.23) 

(2.19) 

(2.23) implies that @ ( a )  3 0. 

A 0  3 A ( a )  > p 

We now wish to argue that 

(2.24) 

for all a > O .  Since (undirected) self-avoiding walks are a proper subset of T ( n ;  a )  
which, in turn, is a subset of the set of unrestricted trees with cardinality t ( n )  and 
growth constant A o ,  

(2.25) tc ,  < t ( n  ; a )  s t ( n )  

and it follows that 

(2.26) 

To show that the first inequality in (2.26) is strict we assume the contrary, that p = A  ( a ) .  
The expected asymptotic form for C, is 

cn - n * p n  (2.27) 

with C$ > O .  Then (2.19), (2.25), (2.27) together with the assumption that p = h ( a ) ,  
a > 0, imply that 4 c +(a) .  Since this is impossible, p is strictly less than A ( a ) ,  a > 0. 

3. Discussion 

We have investigated the dominant asymptotic behaviour of the number of lattice 
trees having restrictions on the fraction of vertices with degree greater than two. If 
the number (n') of such vertices increases as o(n/log n )  then the dominant asymptotic 
behaviour is the same as that of self-avoiding walks. 

When n+ is, at most, a linear function of n, we have shown that the connective 
constant exists; with some formal assumptions on the subdominant asymptotic 
behaviour, this connective constant is strictly greater than the value of the correspond- 
ing limit for self-avoiding walks. 

In the context of the branched polymer problem this implies that the limiting 
entropy per monomer of a branched polymer with a vanishingly small fraction of 
branch points is identical to that of a linear polymer. If the number of branch points 
is allowed to increase linearly with the degree of polymerisation then the limiting 
entropy per monomer is strictly greater than that for a linear polymer. 
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